Quasiorder lattices of varieties

Gergő Gyenizse and Miklós Maróti

University of Szeged

Novi Sad, 2015. June 5-7.

Definition

The set of compatible quasiorders of an algebra A is

 $Quo(\mathbf{A}) = \{ \alpha \leq \mathbf{A}^2 \mid \alpha \text{ is reflexive and transitive } \}.$

 $\begin{tabular}{ll} \bullet A \end{tabular} \begin{tabular}{ll} \bullet A \end{$

$$(x,y) \in \alpha \implies (p(x),p(y)) \in \alpha$$

for all unary polynomials p of **A**.

- Quo(A) forms an (involution) lattice with $\alpha \land \beta = \alpha \cap \beta$ and $\alpha \lor \beta = \overline{\alpha \cup \beta}$, where $\overline{\alpha \cup \beta}$ is the transitive closure of $\alpha \cup \beta$.
- **③** The set $Con(\mathbf{A})$ of congruences forms a sublattice of $Quo(\mathbf{A})$.

Goal

Systematic study of the connection between congruence identities, quasiorder identities and Maltsev conditions satisfied by varieties.

Why study compatible quasiorders?

- More general than congruences.
- e Better behaved than tolerances.
- Some connection with the constraint satisfaction problem:

For a subdirect power $\mathbf{R} \leq_{\mathrm{sd}} \mathbf{A}^n$ and a closed path

$$p:=k_1 o k_2 o \dots o k_m o k_1$$
 with $k_i \in \{1,\dots,n\}$

define

$$\alpha_p = \bigcup_{i=1}^{\infty} (\eta_{k_1} \circ \eta_{k_2} \circ \cdots \circ \eta_{k_m})^i \quad \text{where} \quad \eta_k = \ker \pi_k.$$

We have $\alpha_p \in \text{Quo}(\mathbf{R})$ and $\alpha_p \vee \eta_{k_1}$ can be computed from the following two-projections:

$$\pi_{k_1k_2}(R), \ \pi_{k_2k_3}(R), \ldots, \pi_{k_mk_1}(R).$$

"Prague strategy" iff range $(p) \subseteq \operatorname{range}(q) \implies \alpha_p \leq \alpha_q$.

Is this study interesting?

Main results:

- A locally finite variety V is congruence distributive (Con(A) is distributive for all A ∈ V) if and only if it is quasiorder distributive (Quo(A) is distributive for all A ∈ V).
- A locally finite variety is congruence modular if and only if it is quasiorder modular.
- The variety of semilattices is not quasiorder meet semi-distributive (but it is congruence meet semi-distributive).
- Quo(A) is not in the lattice quasivariety generated by the congruence lattices Con(B) for $B \in HSP(A)$.
- For a finite algebra A in a congruence meet semi-distributive variety Quo(A) has no sublattice isomorphic to M_3 .
- We conjecture/show that there is an infinite semilattice whose quasiorder lattice contains a sublattice isomorphic to M_3 .

Congruence distributivity

Theorem (B. Jónsson, 1967)

A variety is congruence distributive iff it has Jónsson terms

 $x \approx p_1(x, x, y)$ and $p_n(x, y, y) \approx y$, $p_i(x, y, y) \approx p_{i+1}(x, y, y)$ for odd i, $p_i(x, x, y) \approx p_{i+1}(x, x, y)$ for even i, and $p_i(x, y, x) \approx x$ for all i.

Theorem (G. Czédli and A. Lenkehegyi, 1983; I. Chajda, 1991)

There is a Maltsev condition charaterizing quasiorder distributivity.

Corollary (G. Czédli and A. Lenkehegyi, 1983)

If a variety \mathcal{V} has a majority term, then it is quasiorder distributive.

Directed Jónsson terms

Definition

The ternary terms p_1, \ldots, p_n are **directed Jónsson terms** if

$$x \approx p_1(x, x, y)$$
 and $p_n(x, y, y) \approx y$,
 $p_i(x, y, y) \approx p_{i+1}(x, x, y)$ for $i = 1, ..., n-1$, and
 $p_i(x, y, x) \approx x$ for $i = 1, ..., n$.

Theorem (A. Kazda, M. Kozik, R. McKenzie and M. Moore, 2014) A variety is congruence distributive if and only if it has directed Jónsson terms.

Lemma (A. Kazda, M. Kozik, R. McKenzie and M. Moore, 2014) If $\alpha \triangleleft_{WJ} \beta$ (weak Jónsson absorbs) for $\alpha, \beta \in Quo(\mathbf{A})$ then $\alpha = \beta$.

Theorem (L. Barto, 2012)

Finitely related algebras in congruence distributive varieties have near unanimity terms.

$$t(y, x, \ldots, x) \approx t(x, y, x, \ldots, x) \approx \cdots \approx t(x, \ldots, x, y) \approx x.$$

Theorem

A locally finite variety is congruence distributive if and only if it has directed Jónsson terms.

Proof.

Let $\mathbf{F} = \mathbf{F}_{\mathcal{V}}(x, y)$ be the two-generated free algebra, and put $R = \operatorname{Sg}\{(x, x, x), (x, y, y), (y, x, y)\} \leq \mathbf{F}^{3}.$

The algebra (F; Pol(R)) is finitely related and has Jónsson terms, so R has a near-unanimity polymorphism t. The terms generating the tuples $t((y, x, y), \dots, (y, x, y), (x, y, y), (x, x, x), \dots, (x, x, x))$ are directed Jónsson terms.

Theorem

If a finite algebra has directed Jónsson terms, then it is quasiorder distributive.

Proof.

- $\textbf{ S We show } (\alpha \lor \beta) \land \gamma \leq (\alpha \land \gamma) \lor (\beta \land \gamma) \text{ for } \alpha, \beta, \gamma \in \operatorname{Quo}(\textbf{A})$
- 2 Put $\gamma^* = \gamma \cap \gamma^{-1} \in \operatorname{Con}(\mathbf{A})$
- Shoose (a, b) ∈ (α ∨ β) ∧ γ − (α ∧ γ) ∨ (β ∧ γ) such that the interval [a/γ*, b/γ*] is minimal in the poset (A/γ*; γ/γ*)
- Use the directed Jónsson terms to move this chain inside the interval [a, b] = { x | a γ x γ b }.
- The links inside a/γ^* are in $(\alpha \land \gamma) \cup (\beta \land \gamma)$.
- The first link leaving a/γ^* is also in $(\alpha \wedge \gamma) \cup (\beta \wedge \gamma)$.
- **3** By minimality the rest is also in $(\alpha \land \gamma) \lor (\beta \land \gamma)$.

Theorem

For a locally finite variety $\mathcal V$ the following are equivalent:

- V is congruence distributive,
- V has [directed] Jónsson terms,
- **3** \mathcal{V} is quasiorder distributive.

Problem

Does the above equivalence hold for all varieties? Does quasiorder distributivity imply directed Jónsson terms syntactically?

Theorem

For a finite algebra with directed Jónsson terms and α, β compatible reflexive relations we have $\overline{\alpha} \cap \overline{\beta} = \overline{\alpha \cap \overline{\beta}}$.

Problem

Do we have $\overline{\alpha} \cap \overline{\beta} = \overline{\alpha \cap \beta}$ in the above theorem? Is taking the transitive closure a lattice homomorphism (for monounary algs)?

Directed Gumm terms

Definition

The ternary terms p_1, \ldots, p_n, q are **directed Gumm terms** if

$$x \approx p_1(x, x, y),$$

 $p_i(x, y, y) \approx p_{i+1}(x, x, y) \text{ for } i = 1, \dots, n-1,$
 $p_i(x, y, x) \approx x \text{ for } i = 1, \dots, n,$
 $p_n(x, y, y) \approx q(x, y, y) \text{ and } q(x, x, y) \approx y.$

Theorem (A. Kazda, M. Kozik, R. McKenzie and M. Moore, 2014)

A variety is congruence modular if and only if it has directed Gumm terms.

- Has been known for locally finite varieties (M. Kozik)
- Similar trick works to show this (L. Barto: finitely related algebras in congruence modular varietes have edge term)

Congruence modularity

Theorem

If a finite algebra has directed Gumm terms then the lattice of its compatible quasiorders is modular.

- To show $\alpha \leq \gamma \implies (\alpha \lor \beta) \land \gamma \leq \alpha \lor (\beta \land \gamma)$ we take again a counterexample pair (a, b) with minial distance in γ/γ^* .
- Significantly harder than the distributive case.

Theorem

For a locally finite variety $\mathcal V$ the following are equivalent:

- $\bullet \ \mathcal{V} \ is \ congruence \ modular,$
- **2** \mathcal{V} has [directed] Gumm terms,
- $\mathbf{3} \ \mathcal{V}$ is quasiorder modular.

Proposition (I. Chajda, 1991)

In n-permutable varieties compatible quasiorders are congruences.

Semi-distributivity

Definition

A variety is **congruence meet semi-distributive** if the congruence lattices of its algebras satisfy

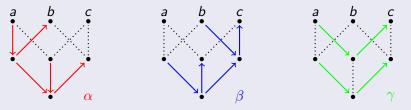
$$\alpha \wedge \gamma = \beta \wedge \gamma \implies (\alpha \vee \beta) \wedge \gamma = \alpha \wedge \gamma.$$

The dual condition is congruence join semi-distributivity.

Typical meet semi-distributive variety is the variety of semilattices (or varieties with totally symmetric operations of all arities).

Proposition

The variety of semilattices is not quasiorder meet semi-distributive.



Theorem (D. Hobby and R. McKenzie, TCT Theorem 9.10)

For any locally finite variety \mathcal{V} the following are equivalent:

- $1 \quad \operatorname{typ}\{\mathcal{V}\} \cap \{\mathbf{1},\mathbf{2}\} = \emptyset.$
- V satisfies an idempotent linear Maltsev condition that does not hold in the varieties of vectorspaces over finite fields.
- $\mathcal{V} \models_{\text{CON}} \gamma \land (\alpha \circ \beta) \subseteq \alpha_m \land \beta_m$ for some m where $\alpha_0 = \alpha$, $\beta_0 = \beta$, $\alpha_{n+1} = \alpha \lor (\gamma \land \beta_n)$ and $\beta_{n+1} = \beta \lor (\gamma \land \alpha_n)$.
- ${\small \textcircled{\ }}{\small \bold{M}}_3 \text{ is not a sublattice of } \mathrm{Con}({\small \textbf{A}}) \text{ for any } {\small \textbf{A}} \in \mathcal{V}.$
- **9** \mathcal{V} is congruence meet semi-distributive.
- There are no non-trivial abelian congruences.
 - The previous example shows that D₁ is a sublattice of the quasiorder lattice of the free semilattice with three generators.
 - So items (3) and (5) do not hold for quasiorder lattices.

Minimal algebras

Definition

A finite algebra **A** is (α, β) -minimal for $\alpha, \beta \in \text{Quo}(\mathbf{A})$ with $\alpha < \beta$ if every unary polynomial is either a permutation or $p(\beta) \subseteq \alpha$.

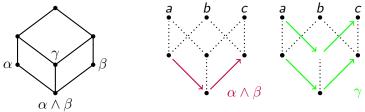
The very beginning of tame congruence theory (excluding the classification of minimal algebras) goes through.

Proposition (c.f. D. Hobby and R. McKenize, TCT Theorem 2.8)

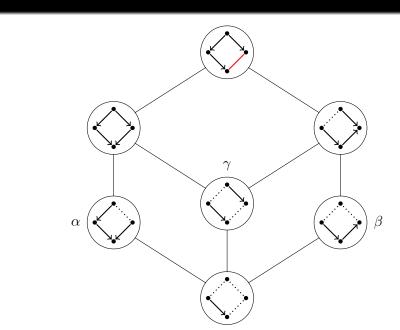
Let (α, β) be a tame quasiorder quotient of a finite algebra **A**. Then all (α, β) -minimal sets of **A** are polynomially isomorphic.

Proposition (c.f. D. Hobby and R. McKenize, TCT Lemma 2.10)

Let **A** be a finite algebra and $\alpha < \beta$ be quasiorders of **A** such that the interval lattice $[\alpha, \beta]$ in Quo(**A**) has no strictly increasing, non-constant, meet edomorphism. Then every (α, β) -minimal set is the range of an idempotent unary polynomial. • Consider again the quasiorder lattice of the free semilattce with three generators **S**, which has a sublattice isomorphic to **D**₁.



- D₁ has critical quotient (α ∧ β, γ), corresponding to meet semi-distributivity.
- We can take the image of **S** under the idempotent polynomial $p(x) = a \wedge x$.
- We have p(γ) ⊈ α ∧ β so p embeds the D₁ sublattice into the quasiorder lattice of p(A).



Compatible quasiorders

Congruence distributivity

Congruence modularit

Theorem

For a finite algebra A in a congruence meet semi-distributive variety Quo(A) does not have a sublattice isomorphic to M_3 .

Proof.

- **①** Choose a minimal sublattice of Quo(A) isomorphic to M_3 .
- **2** The botton quasiorder α cannot have a double edge.
- **③** The top quasiorder β must have a double edge.
- The top quasiorder β must be a congruence.
- The algebra must be (α, β) -minimal.
- The algebra must be $(0, \beta)$ -minimal.
- We are back to congruences, use classification of minimal algebras.

Work in progress

- We (hope to) have a construction of an infinite semilattice whose lattice of compatible quasiorders has an M_3 sublattice.
- Working on congruence join semi-distributivity and omitting the M₃ and D₂ sublattices.
- Trying to find a good notion of the commutator for quasiorders (if there is such a thing).
- Interesting theorems in the TCT book (e.g. Theorem 5.26) about orderable tame quotients (types 4 and 5) and (α, β) -preorders.

Thank You!